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Abstract—The collective behavior, describing spontaneously
emerging social processes and events, is ubiquitous in both
physical society and online social media. The knowledge of
collective behavior is critical in understanding and predicting
social movements, fads, riots and so on. However, detecting,
quantifying and modeling the collective behavior in online social
media at large scale are seldom unexplored. In this paper, we
examine a real-world online social media with more than 1.7
million information spreading records, which explicitly document
the detailed human behavior in this online information cascading
system. We observe evident collective behavior in information cas-
cading, and then propose metrics to quantify the collectivity. We
find that previous information cascading models cannot capture
the collective behavior in the real-world and thus never utilize it.
Furthermore, we propose a generative framework with a latent
user interest layer to capture the collective behavior in cascading
system. Our framework achieves high accuracy in modeling the
information cascades with respect to popularity, structure and
collectivity. By leveraging the knowledge of collective behavior,
our model shows the capability of making predictions without
temporal features or early-stage information. Our framework can
serve as a more generalized one in modeling cascading system,
and, together with empirical discovery and applications, advance
our understanding of human behavior.

Index Terms—Collective Human Behavior; Information Cas-
cades; Generative Framework

I. INTRODUCTION

Collective behavior describes the phenomenon that people
exhibit same behavior in a spontaneous way which do not
reflect existing social structure [1]. The collective behavior
lies in various social phenomena, ranging from the worldwide
stock crashes in 2018, the popularity of the billion-view-
video G̈angnam Style,̈ to inconspicuous ones such as several
customers having meals in a restaurant at some point. The
collective behavior underlying these phenomena cannot be
explained by existing social structure, but indicates that they
share some unknown common points, which might be social-
economic factors, interests or eating habits, etc. Although
different opinions on interpretations, the existence and signif-
icance of collective behavior is widely recognized by public.
The usefulness of the understanding of collective behavior is
further proven by different research topics, such as predicting
human mobility [2], analyzing human activity patterns [3] and
so on.

However, collective behavior underlying information cas-
cades in online social media is seldom explored. With the
rapid growth of various online social media, detailed human
behavior is documented at large scale, offering great opportu-
nities to study the collective behavior. The most related works
try to model the cascading system in social networks, such as
modeling the popularity dynamics [4] or predicting the final
size of cascades [5]. However, none of them tries to examine
the collective behavior in cascading system which is embodied
in the phenomena that a group of users always participate in
same cascades collectively.

Fig. 1. Illustration of collective behavior in cascading system. We illustrate
three collective groups of followers of a same root user. Followers in the
same collective group tend to participate in the same information cascades,
while followers in different collective groups seldom appear together. Possible
factors, including timing, structure, topic of posts and user interests, are all
responsible for such collective behavior. In this paper, we try to quantify and
model such collective behavior in cascading system.

In this paper, we collect more than 1.7 million information
spreading records from Tencent Weibo, a Twitter style social
media in China, which explicitly document the detailed human
behavior in this online information cascading system. We find
evident collective behavior in real-world cascading system. In
Fig.1 we illustrate three collective groups of followers of a
same root user. Followers in the same collective group tend to
participate in the same information cascades, while followers
in different collective groups seldom appear together. The
factors that influence aforementioned collective behavior are
complex. First, timing can play an important role in collective
behavior due to the shared daily routine of followers in the



same collective group. Second, followers in the same collective
group can be embedded in a same tightly-knit community,
indicating the impact of structure. Third, followers in the
same collective group can possibly share similar interests in
specific topics of tweets. Furthermore, all these factors can
drive collective behavior simultaneously. Thus, the critical
problem is: Can we model the collective behavior in cascading
system caused by the complex and mixture factors?

In order to capture the collective behavior, we first provide
metrics to quantify the collectivity of behavior, and then prove
that previous information cascading models cannot capture the
observed collectivity. Furthermore, we propose a generative
framework to model the collective behavior in cascading social
systems. Our genreative framework is based on point process
with a latent user interest layer to capture the collective
behavior at behavior level directly in cascading system. With
this framework, we not only successfully capture the collective
behavior, but also model cascading system more accurately on
cascade popularity, structure and their correlation. Besides, our
framework shows excellent extensibility and provides unique
capability of predicting the popularity and participants of
cascade with knowing only the identity of a few randomly
selected participants.

In short, we summarize our contributions as follows:
• Quantification of collectivity: We discover the ubiqui-

tous collective behavior in cascading system and propose
metrics to quantify the collectivity of it.

• A generative framework: We propose a generative
framework which is based on point process with a latent
user interest layer to capture the collective behavior
in cascading system. Our framework shows excellent
extensibility and unification power.

• Accuracy and usefulness: With the knowledge of col-
lectivity, our framework accurately matches real world
cascading system in popularity, structure and collectiv-
ity, providing capability of making predicitons without
temporal features.

The outline of the paper is: survey, method, collective
behavior in cascading system, experiments, conclusions and
future work.

II. RELATED WORK

As the investigated problem is closely related to collective
behavior and information cascades, we mainly review the
related works in these two fields.

Collective behavior. Collective human behavior is tightly
associated with human culture [6], which has wide applications
in social network researches. Lehmann et al. [7] find the
dynamic classes of hashtags from the spikes of collective
attention in Twitter. Tang et al. [8] propose a scalable learning
method for collective behavior based on sparse social dimen-
sions. Banerjee [9] introduce a nature-inspired theory to model
collective behavior from the observed data on blogs with aim
of prediction. Candia et al. [3] discover the pattern of people
calling activity from the collectivity in mobile phone records.

However, none has discovered the collective behavior in cas-
cading system and promote cascade modeling and prediciton
with this collectivity.

Cascading system. In social network, a piece of informa-
tion may get reshared multiple times: one shares the content
with friends, several of these friends also share it with their
respective sets of friends, then information cascade develop
and this phenomenon happens all the time, which constitutes
cascading system. In recent years, many methods have been
proposed to model cascading system and make prediction on
cascades. Some of them focus on predicting the future size of
a cascade with topological characteristics of the cascade [10]
or dynamic information [11]. Among them Cheng et. al [12]
indicate the significance of temporal features like retweeting
rate among other features. Other methods, mainly based on
point process [13] or survival analysis [14], attempt to model
cascade dynamics and predict the evolution of popularity.
Shen et. al [4] employ reinforcement poisson process to
model cascades. Kobayashi et. al [15] take human circadian
nature into account. Mishra et. al [16] combine feature-driven
methods with generative modeling approaches.

However, these methods mainly treat each cascade as an
independent process rather than considering the whole cas-
cading system as an entirety. Former studies concentrate on
popularity but disregard the structure patterns and collective
behavior, for which there is still no comprehensive framework
that can achieve accuracy in all three aspects of cascades:
popularity, structure and collectivity.

III. COLLECTIVE BEHAVIOR IN CASCADING SYSTEM

Given a newtowrk G = (V,E), where V indicates set of
users and E indicates the relations, supposing a user u usually
post different kinds of root tweets < t1,u, t2,u, ..., tn,u >,
where ti,u indicates the ith kind of information, his followers
are ususally only interested in one or a few kinds among
them, due to their interest or some other reasons, and thus
tend to appear in the cascades triggerred by the corresponding
roots. Denoting the cluster of users who frequently retweet
ti,u as Ci,u, if there are many cooccurence for users in same
clusters but few cooccurence for users in different clusters,
we regard this phenomenon as the collective behavior in
cascading system. That means when u triggers a cascade,
people involved by retweeting are always those interested in
this kind of information, rather than randomly selected from
followers or completely determined by social relationship.
Users in same cluster share similar interests, which signifies
that they are likely to keep this collectivity in future cascades.
Also, users with opposite interest present mutual exclusion in
their behavior of cascade participation.

An intuitional method to quantify collective behavior is to
calculate the correlation of behavior between users. For each
user u, we construct his behavior vector <c1,u, c2,u, ..., cn,u>
where ci indicates the ith cascade. Let ci,u = 1 if u is involved
by retweeting or posting the root in ci, otherwise ci,u = 0.
We use classical Pearson correlation coefficient to calculate
the correlation between vector x and y as follows:
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Fig. 2. We detect the collectivity by calculating the behavior correlation between each pairs of users in network and plot distribution, finding that former
methods cannot catch collective behavior in cascading system while our framework can fit very well. The upper is Pearson Correlation Coefficient and the
below is Jaccard Index. We compare the results of simulation data generated by different models with real data at each column. (a)(d) is our framework,
choosing participants by inferring latent interest. (b)(e) is branching process, representing models that randomly select participants. (c)(f) is our base model,
produced by removing interest layer from our framework, representing models that choose participants according to edge-based parameters.
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Negative coefficients mean divergence while positive coeffi-
cients mean synchronization between two users. We only care
about the degree of correlation rather than it is positive or
negative, for which we calculate the absolute value.

Another comprehensible metric is the similarity of behavior.
Jaccard index is a frequntly-used metric for the overlap ratio.
Denote the set of cascades that u has joined by Su, then we can
use Jaccard index for comparing the similarity and diversity
of behavior sets from two users:

Ju,v =
|Su ∩ SV |
|Su ∪ SV |

=
|Su ∩ SV |

|Su|+ |SV | − |Su ∩ SV |
(2)

We calculate Pearson coefficients and Jaccard index be-
tween every two users and draw the distribution in Fig 2.
Our framework fits the real distribution extremely well. As for
previous models that ignore the collectivity, there are mainly
two types of methods for them to choose participants. The first
type is completely indifferent to the identity of participants and
will choose randomly. The second type of model has edge-
based parameters which indicate the intensity of relation and
are the basis of making choice. We use branching process(BP)

and our base model(Base), which belong to the two types
above respectively, to examine the ability for these models
to capture collectivity. As we can see, collectivity in real
data are obviously higher than synthesized data generated by
these models, which means previous methods of these two
categories fail to model collective behavior.

One shortcoming for the edge-based metrics is that they are
easily deliquated by huge quantity of irrelevant point pairs
in social network, for which we define a new point-based
collectivity measurement Col. Assuming u has m followers
and has posted n tweets, the collectivity measurement Col on
u is defined by:

Colu =

∑
(x,y)∈Nu

|rx,y|(
k
2

) (3)

where Nu is the tweet set of u and k is the number
of followers. Col is the average absolute value of Pearson
correlation coefficient among all pairs of tweet vectors. High
coefficient between two tweets means that they are retweeted
by nearly same users or completely different users, both of
which are manifestation of collectivity. Followers show strong
collectivity toward his tweets if a user has a high value of Col.
We discard Jaccard index here because the average value for it
is meaningless, since high positive correlation(value towards
1) and high negative correlation(value towards 0) will produce
low relation in average.
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Fig. 3. Our model match the reality well and other methods lose lots of
collectivity (0.12 among 0.81 for weak part and 0.15 among 0.31 for medium
part) on the cumulative distribution function of Col. We can also judge that
the collective behavior is considerably general in cascading system.

From Fig.3 we can see, more than 80% users in real data
have average Pearson coefficient bigger than 0.2, and over
31% users bigger than 0.4. Generally, Pearson coefficient of
0.2 means relatively obvious relation (although weak), and
value of 0.4 means medium relation. Considering the large
quantities of tweet vector pairs, this is a strong evidence
for the existence of collectivity. However, previous methods
ignored the knowledge behind collective behavior and can only
generate behaviors of much lower collectivity.

IV. PROPOSED METHOD

In this section, we present our framework and generator in
detail, introducing how to capture collectivity with latent user
interest layer and make generation with the proposed method.

A. Framework intuition

Our framework based on network level, which means we
take the whole cascading system as an entirety with behaviors
mutually connected for training and generation. For generating
the microscopic forming process of collective behavior, we
adopt point process as the basis of our framework. Inspired
by [17], we also use poisson process as the assumption
of temporal part to control the rate of posting root tweets
and retweeting. Since the formation of collective behavior is
diverse and can be very complicated, we aim to capture the
collectivity at the behavior level directly with a latent variable
layer. We call this part user interest layer where the concept
of interest is expanded to represent any internal motivation
for collectivity, which is learned from history behavior.

B. Our framework

For every user u in the network, the action of generating
root tweets can be regarded as following a poisson process of
intensity λu, which indicates the frequency of posting. Same
user may post tweets based on different latent topics, following
a topic distribution Φu. When other users gets access to a
tweet tw generated by u, their actions can be separated into

two steps. At first they need to see the tweet, and the view
action of a user can also be regarded as following a poisson
process approximately. Second, at the time of seeing they will
make decisions whether to retweet it and get involved in the
cascade. The decisions depend on following three factors:

i) User interest φ. Users have different interests to different
latent topics. A tweet with their preferential topic will be more
likely to be retweeted.

ii) Relationship intensity π. If u is retweeted frequently
by one of his followers v, it means that the relation between
u and v is strong and u may be important to v, for which v
has more probability to retweet u in sebsequent cascades.

iii) Position power r and decay factor x. Position power
determines the level of a user in a cascade. The author of
root tweet has important influence on decisions of whether
to retweet it for others, so we denote whether this user is
the author by r. Besides, in reality, a cascade cannot spread
endlessly and we find there is an exponential decay of retweet
rate along with the depth of tweet in cascade increasing, for
which we amend the rate of retweeting a tweet with depth d
by multiplying xd on it, where global decay factor x ∈ (0,1).

With all the aforementioned, the rate for u to retweet a
tweet with topic τ and depth d posted by v is πu,v,rφv,τxd.
The users who decide to retweet tw will get involved in the
cascade with a new tweet twr. Iteratively, some users will see
twr and decide to join or not based on the factors above. This
process continues until no more new users join the cascade.

According to the process described above, we propose
our user interest framework by steps. At first, consider the
likelihood function of one cascade. As the author of root tweet,
the probability of uc generating a information at time t is
denoted by Quc

(t). For every users u who have joined the
cascade by retweeting, the probability of u retweets a tweet
tw at t is denoted by Ptw,v(t). And for other user who already
get access to c but have not been involved until the end time of
observation, we denote the probability of u have not retweeted
to tw until Te by Rtw,u,T . Assuming that Q, P and R are
mutually independent, the likelihood function of cascade c is:

Lc = P (Quc(t) ∩

 ⋂
(tw,v)∈RSc

Ptw,v(t)

 ∩
 ⋂

(tw,v)∈RSc

Rtw,u,T

)

= Quc(t)
∏

(tw,v)∈RSc

Ptw,v(t)
∏

(tw,v)∈NSc

Rtw,u,T

(4)
Considering that generating root tweets follows a poisson

process of intensity λu, and that the latent interest distribution
of u on root tweets is Φu,τ , we get:

Quc,τ (t) = λuc
Φuc,τe

−λuc (t−tl) (5)

where tl is the last time u generates an information. If there
is no former tweets, tl is set to be the start time of observation.

The probability for u to see tw at t is ωue−ωu(t−ttw), where
ωu is poisson intensity for seeing and ttw is when tw posted.



TABLE I
SYMBOLS AND DEFINITIONS

Symbols Definitions
uc The sender of the root tweet in cascade c
rtw The position power, indicating whether a tweet tw is a root tweet. rtw = 1 for root tw and rtw = 0 otherwise
Ts, Te The start time and end time of the observation window
τ The latent topic variable. We set the number of topic categories to be 5 in experiments.

Φu,τ The distribution on latent user interest for posting root tweet, Στφu,r,τ = 1, 0 ≤ φu,τ ≤ 1.
φu,τ The distribution on latent user interest for retweeting, Στφu,r,τ = 1, 0 ≤ φu,τ ≤ 1.
λu The rate of generating a root tweet of a user, λu ≥ 0
ωu The rate of viewing a tweet of a user, ωu ≥ 0

πu,v,rtw The relationship intensity of user v to u on a r-based tweet ωu ≥ 0
x The global decay factor to control the depth of generating cascades, 0 < x < 1
PSc The set of (tweet, user) pairs who can get access to at least one tweet in cascade c from users they follow and possibly join cascade c
RSc The set of (tweet, user) pairs who are in PSc and did get involved in cascade c
NSc The set of (tweet, user) pairs who are in PSc but have not joined the cascade

After seeing a tweet, if u decide to retweet this tweet with
topic τ and depth d, we get:

Ptw,u,τ (t) = Psaw(t− ttw)Pretweet

= ωue
−ωu(t−ttw)πutw,u,rtwφu,τx

dtw
(6)

where φu is the latent interest distribution on retweeting
tweets, distinguished with Φu. For experiments in Sec. V, we
assume there are 5 latent interest variables in total.

For u who has not retweeted an accessible tw, there are two
possible situation: u has not seen tw till Te, or u has seen it
but decide not to reply. So we get:

Rtw,u,T,τ = (1− Psaw) + Psaw(1− Pretweet)
= 1 + πutw,u,rtwφu,τx

dtw(e−ωu(Te−ttw) − 1)
(7)

Substitute equation 5 6 7 into equation 4 and summate on
all interest variables. The likelihood function of cascade c is:

Lc =
∑
τ

λucΦuc,τe
−λuc (t−tl)∏

(tw,v)∈RSc

ωue
−ωu(t−ttw)πutw,u,rtwφu,τx

dtw

∏
(tw,v)∈NSc

(1 + πutw,u,rtwφu,τx
dtw(e−ωu(Te−ttw) − 1))

(8)
A whole cascading system S contains all cascades generated

by all users. The set of cascades generated by u is denoted by
Cu. Thus the likelihood function for S is:

Lcs =
∏
u∈V

∏
c∈Cu

Lc

=
∏
u∈V

e−λuTse

∏
c∈Cu

(
∑
τ

λuΦu,τ∏
(tw,v)∈RSc

ωve
−ωv(t−ttw)πutw,v,rtwφv,τx

dtw

∏
(tw,v)∈NSc

(1 + πutw,v,rtwφv,τx
dtw(e−ωv(T−ttw) − 1))

(9)
where Tse = Te − Ts is the length of the observation.

Justification of the model:

Timing. λ and ω control the temporal part of cascading
system, indicating the frequency of posting roots and retweet-
ing respectively. With user-specific λ and ω, our framework
can generate root tweets and retweets with consistent time
distribution with empirical data, standing out from the models
with no dynamics part. Our framework can handle more
complicated dynamic patterns by replacing poisson process
with more complex dynamic model.

Structure. π indicates the hetergeneous influence of infor-
mation sender to his followers, independent with the content.
Big π means that this relation is impactive and the receiver
often retweet information from the sender. If π is small, the
edge between sender and receiver is weak and interactions
seldom happen on it. Combining the following two layers
with π, our framework can make accurate generations on both
popularity and structure and their correlation.

Other factors of collective behavior. Φ and φ make up
the latent user interest layer, indicating the distributions of
topics and user interests respectively, making it possible to
catch collective behavior without content. Furthermore, Φ and
φ are learned from history behavior, for which they can capture
the complicated collectivity directly at behavior level. Inho-
mogeneous distribution means this user has strong preference
for specific topic, and his behavior on these categories of
information is very different from other kinds. Homogeneous
distribution indicates that the behavior of user seldom changes
when faced with information on various topics. Users with
similar interest tend to appear in same cascade more frequently
while users with unmatched interest have few cooccurence,
both of which reflect the collectivity in cascading system.

C. Parameter estimation

Our parameter set consists of {λ, Φ, φ, ω, π, x}. Since λ
is only related to root tweets, we calculate λ directly from
the times of generating root tweets in observation firstly.
For other parameters, considering that there is unobservable
latent variable distribution parameter Φ and φ, we learn the
parameters by Expectation Maximization(EM) Algorithm [18]
rather than maximizing likelihood function directly.

1) Optimize with EM algorithm: Let
∑
τ qc,τ = 1, the log-

likelihood function of cascading system S is:



lnLc =
∑
c∈S

ln(
∑
τ

qc,τ
λucΦuc,τ

qc,τ
·∏

(tw,v)∈RSc

ωve
−ωv(t−ttw)πutw,v,rtwφv,τx

dtw

∏
(tw,v)∈NSc

(1 + πutw,v,rtwφv,τx
dtw(e−ωv(T−ttw) − 1)))

−
∑
u∈V

∑
τ

λuTsedτ

(10)
With Jensen inequality we get:

lnLc ≥
∑
c∈S

∑
τ

qc,τ (lnλuc
+ lnΦuc,τ+∑

(tw,v)∈RSc

(lnωv − ωv(t− ttw))+

∑
(tw,v)∈RSc

(lnπutw,v,rtw + lnφv,τ + dtwlnx)+

∑
(tw,v)∈NSc

ln(1 + πutw,v,rtwφv,τx
dtw(e−ωv(T−ttw) − 1)))

−
∑
c∈S

∑
τ

qc,τ lnqc,τ −
∑
u∈V

∑
τ

λuTsedτ

= FCS
(11)

With EM algorithm, we update the value of qc,τ with
current values of parameters at E-step, and estimate parameters
by maximizing FCS , the lower bound of joint likelihood,
at M-step. By alternately iterating E- and M-steps until the
value of FCS converges, we infer the value of {λ, Φ, φ, ω,
π, x} from empirical data. In experiments we use gradient
descent algorithm as optimizer in M-step. For the purpose of
finding a good region of parameter space and getting faster
convergence, we set the initial value of parameters using some
prior knowledge from empirical data.

D. Generator

We design the generator by simulating the process of
cascading system formation. During generation, any event that
happens after the end of observation will be discarded, along
with any potential subsequent events activated by it. In poisson
process, we know:

P (X ≤ t) = 1− e−λt

t = − ln(1− P (X ≤ t))
λ

(12)

For the process of generating root tweets and seeing tweets,
we first sample p from u ∈ V as P (X ≤ t), then use equation
12 to infer t as interevent time. We present the generation
process in Algorithm 1.

V. EXPERIMENTS

In this section, we evaluate the effectiveness of our user
interest framework on the real data. We first introduce the

Algorithm 1: Generating Process
Input : Network structure G = (V,E), observation window

(Ts,Te), parameter set {λ, Φ, φ, ω, π, x}
Output: Behavior logs of cascades system during observation

window
1 Collect Fu, the set of followers of each user u ∈ V , from E;
2 Set tweet queue to be an empty queue;
3 Set cascades to be an empty list;
4 for u ∈ V do
5 t = Ts;
6 while t ≤ Te do
7 Sample p ∼ Uniform([0, 1]) ;
8 iet = − ln(1−p)

λu
;

9 Sample τ ∼ Φu;
10 t = t+ iet;
11 r = 1 ; // Is a root
12 d = 0 ; // Define depth of root to be 0
13 a = NULL ; // Root has no ancestor
14 Place tweet (u, t, τ, r, d, a) into tweet queue;
15 end
16 end
17 while tweet queue is not empty do
18 tw = tweet queue.pop();
19 if ttw < Te then
20 Place tw into cascades;
21 for v ∈ Futw do
22 threshold = πutw,v,rtwφv,τtwx

dtw ;
23 Sample p ∼ Uniform([0, 1]) ;
24 if p ≤ threshold then
25 iet = − ln(1−p)

λv
;

26 t = ttw + iet;
27 r = 0;
28 d = dtw + 1; a = tw; Place tweet

(u, t, τ, r, d, a) into tweet queue;
29 end
30 end
31 end
32 end
33 Make cascade sorted and return;

dataset and then show that our model is more accurate than
existing methods on matching real data in three aspects at
macroscopic level. We also demonstrate the unique predicting
power of our model on popularity and participants of cascades
with utilization of collective behavior.
A. Datasets

Our experiments are conducted on an online information
diffusion dataset [19] from Tencent Weibo1, a Twitter-style
social platform in China. It includes all cascades generated
in the 10 days between Nov 15 and Nov 25 2011 on a
sub-network. For each tweet, there is a triad < u, t, a >
to respectively represent the sender of tweet, sending time
of tweet, and the tweet it reply to, from which we can
easily construct the whole cascading system with dynamics.
The underlying social network is reconstructed based on the
observed retweeting activities. In this network there are 7625
users, 59828 directed edges. The whole cascading system
contains 447453 cascades and 598169 tweets.

B. Accuracy

We validate the accuracy of our framework by answering
whether the simulation data generated from our framework

1http://t.qq.com/



can match real data on distribution of various metrics. The
experiments are conducted by validating the accuracy of
following three aspects: (i) the timing in cascading system, (ii)
the popularity and structure of cascades, and (iii) the colletive
behavior existing in real world. We train models with all 10
days data and then generate behavior logs of same length of
time with modeling parameters.

1) Baselines for experiments: Our framework, based on
point process, takes the whole cascading system as an entirety
with behaviors mutually connected for training and genera-
tion. The generation is based on history behavior rather than
early-stage information, which makes it different from most
cascading models. Here We consider following representative
generative models for comparison:

i) Branching process (BP) [20]: BP assumes that each user
forwards the information to a set of offspring neighbors, whose
size is determined by the offspring size distribution of this
user in real data. Since our framework distinguish roots from
retweets, we also reinforce BP by learning two offspring size
distribution for each user, one for roots and one for others.

ii) Epidemic model (EP) [21]: EP regards the spread of
information as a process of contagion between users through
their relationship. When infected with the information, the user
may recover with certain probability, or spread the information
to his followers on the edge-based infectious rate. We also
extend the epidemic model by learning two infectious rate for
each edge, distinguishing whether the information is root.

iii) Our framework without interest layer (Base): We remove
latent interest distribution parameters Φ and φ from our
framework and employ the rest part as our third baseline.
From comparing the results with and without interest layer, the
effectiveness of considering collectivity is more outstanding.

Since BP and EP are unable to generate the process of
posting root tweets, we let each user to generate root tweets
as much as the number he posted in real data for these models
in experiments.

2) Accuracy of timing: We evaluate the effect of our tem-
poral part by comparing the interevent time(IET) distribution
of generated data with reality, which is a significant metric of
information spreading dynamics [22]. Note that BP and EP
have no dynamic property and cannot generate tweets with
timestamps, not to mention IET distribution.

As shown in Fig. 4, the temporal layer of our framework
fits the reality pretty well on the interevent time distribution of
posting roots and retweets. We also notice that there is a small
divergence between our framework and reality for big IET. It is
caused by the non-poisson nature in human behavior and can
be solved by extending our framework with more complicated
dynamic model. See Sec. VI.

3) Accuracy of popularity and structure: We evaluate the
accuracy on not only popularity but also structure, which gets
few attention in most cascading prediction method. Popularity
n measures the total number of tweets involved in a cascade.
Regarding a cascade as a treelike structure, we choose the
following metrics for our experiments which are representative
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Fig. 4. Our model fits reality well on the interevent time cumulative probability
distribution(CDF) of posting roots (a) and retweets (b). For better visual effect
on the tail, we plot the curve at semilog scale.

enough to describe and quantify structural patterns of infor-
mation cascades [23]:

i) Depth measures the largest distance from root to other
tweets in cascades.

ii) Width is the largest number of offsprings diverged from
a same tweet in the cascade.

iii) Wiener Index is defined as the sum of the lengths of
the shortest paths between all pairs of tweets in the cascade.

iiii) Diameter is the length of the longest path between two
tweets in the cascade. Since the positive correlation between
wiener index and popularity is too strong, we use diameter as
replacement for the experiments of 2-dimensional distribution.

Since generation for once is of high contingency, to recede
the instability, we partition x-axis into bins with equal width
at log scale, and the real width is denoted by wi. To avoid
the result being dominated by first few data points, we
evaluate the popularity and structure accuracy between the
empirical distributions {x1, x2, ..., xk} and the estimated dis-
tributions {x̂1, x̂2, ..., x̂k} by considering logarithmic average
mean error. We calculate logMAE on cumulative distribution
function(CDF) to refrain 0 from appearing in logarithm. The
CDF is given by Xi =

∑k
j≤i pxj

and denoting the numbers
of estimation by k, logMAE is calculated as following:

logMAE =

∑k
i=1 |logXi − logX̂i|

k
(13)

The physical meaning of logMAE is the area between two
distribution curves on a log-scale plot.

From Fig.5 we can see our framework fits the reality much
better than all baseline models. Table II presents the logMAE
on various metrics. Our framework wins with obvious supe-
riority on all metrics except width. We are 32.68% better on
popularity, 12.73% better on depth, 36.44% better on diameter
and 32.35% better on wiener index than the best baseline.
The theory of BP is based on the distribution of offsprings
number, which is identical to the definition of width, for
which BP achieves smallest error, though our framework also
perform well on this metric. Note that baseline models may
achieve good fitting on a portion of metrics, however, only
our framework match reality in all metrics, which show its
excellent comprehensiveness and unification power.

Right distribution for one metric separately not always
means right cascade generation on all of them. The correlation
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Fig. 5. Our framework fits perfectly on all metrics above while other baselines can only handle part of them. The upper is probability distribution function
and the below is cumulative distribution function. From left to right is (a)(e) Popularity, (b)(f) Depth, (c)(g) Width, (d)(h) WienerIndex.

between metrics are also important. The two-dimensional
distribution in Fig.6 show how well our framework captures
the internal relation between these metrics, which means our
framework is comprehensively accurate on popularity and
structure. The fitting of BP is obviously worse and we omit
other baselines for two-dimensional distribution since BP is
the best baseline in Fig.5.

TABLE II
LOG MAE ON VARIOUS METRICS. WINNER IN BOLD.

log MAE

×e−3 Our framework BP EP Base

Popularity 2.088 3.102 4.447 9.813

Depth 1.801 3.037 2.064 4.082
Width 0.044 0.018 2.164 1.881
Diameter 1.158 3.007 2.106 1.822
Wiener Index 0.975 1.442 1.889 1.675

4) Accuracy of collective behavior: We have demonstrated
that our framework accurately captures collective behavior
in cascading systems while baseline models are incapable in
Section 3. As shown in Fig.3, the method that randomly choose
participants generates only 69% users with Col more than
0.2, 12% lower than reality; and only 15% users has Col
bigger than 0.4, nearly half of real distribution. However, our
framework achieve high accuracy on fitting collectivity.

C. Predictions with collectivity

Most of previous models for cascading prediction depend on
temporal features and early stage information, which demand
trace of cascade evolution at global environment. But in reality,
we generally only know what happen around us and temporal
information along the forward chain is also hard to trace. With
only local information and no temporal features, can we still
make predictions? Our framework provides a new method for
cascading prediction under this situation.

We train our framework and baseline models with the first
5 days data. All the testing data is chosen from last 5 days
and we removed the users with hugely different behavior in
this two periods. Our prediction are based on the participants
knowledge rather than temporal features. Note that BP always
randomly choose offsprings and participants knowledge is
meaningless to it, so we focus on comparing with other
baselines for following prediction.

1) Popularity Prediction: Former work has demonstrated
the importance of first layer in popularity prediction [24],
[25], i.e., the followers of the user posting root. Thus the
problem we are about to solve is pretty practical: given the
root user and several participants of a cascade without any
temporal information, can we predict the cascade popularity
on the first layer, namely, how many followers of root author
will be involved in this cascade?

We select all the cascades with popularity more than 5, and
randomly sample 4 participants together with the author of
root as known information. For our framework there are two
useful clues: (i) the popularity already reaches 5. We can infer
an interest distribution Φ for this cascade by looking back the
likelihood of former cascades with popularity larger than 5 for
this user. (ii) this 4 participants joined this cascade. We can
calculate the probability for these 4 users to retweet together
on each topic variable, based on the interest distribution
of the users learned before. After normalization on these
probabilities, we get the inference of interest distribution φ.

Thus, the popularity predicted by our framework is:

Epop =

k∑
i=1

Φiφi∑k
i=1 Φiφi

Ei (14)

where V is the set of followers and Ei is the expected value
of retweets from followers for a root tweet with latent interest
variable i. For EP and Base, they just calculate expectation
popularity based on relation intensity or infectious rate.
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Fig. 7. The mean average percentage error(MAPE) for popularity predic-
tion(a) and the error rate for participation prediction(b). We achieve 0.24 of
MAPE and 0.18 of error rate, surpassing all the baselines.

We use mean average percentage error(MAPE) as metric.
Fig.7(a) shows that as an expectation based method, we
achieve MAPE of 0.24 with obvious advantage over baselines,
which means latent interest information from known partici-
pants is significant and useful.

2) Participants prediction: After predicting how many fol-
lowers will retweet root, we predict who will retweet among
all the followers with knowing several participants and the
popularity on first layer as input. Participants prediction can
lead to promising applications such as forecasting whether
influential users will join the cascade. Existing studies for
this problem most set on diffusion content and user profiles
[26] [27], or rely on temporal and early adopter features [28].
Different from them, our framework only need a randomly

selected subset of participants.
We still select the cascades larger than 5 and randomly select

4 participants but avoid selecting followers of root author u.
For all the followers of u, who really retweet him is regarded
as positive example and others as negative sample. However,
since u usually has lots of followers, there are much more
negative examples than positive ones. To construct an unbiased
set, we randomly choose equal number of negative examples
with positive ones from followers for each prediction, and
predict which of them will retweet.

The prediction process is similar to equation 14. First we
use same method to infer the latent interest distribution of
this cascade. Then we calculate likelihood for each follower
to retweet this root based on interest distribution, together with
other parameters. At last we rank the likelihood and pick first
k followers as our result.

As shown in Fig.7(b), our error rate is 18.14%, superior to
baselines which can only capture the frequency of interaction
and rank followers according to the relation intensity. Our
framework can infer interests from a portion of participants
and estimate the probability for other users to join this cascade,
for which we improve the accuracy.

VI. CONCLUSIONS & FUTURE WORK

In this paper, we study the collective behavior underlying
in cascading system and design the metrics for quantifying
collectivity, with which we prove that existing information



cascading models ignore the knowledge behind collective
behavior and cannot capture the collectivity in real-world.
For solving this problem, we propose a generative framework
which is based on point process with a latent interest variable
layer to capture the collectivity. We successfully explore and
utilize the information behind collective behavior, with which
our framework achieves high accuracy on cascades modeling
in popularity, structure and collectivity, and also provides
capability of making predictions without temporal features.

While the main superiority of our framework is the ability
to capture and utilize collective human behavior, we also
show its comprehensiveness in other aspects of cascading
system. However, more efforts can be made by following
our framework to get more accurate model. For example, we
use poisson process to control the temporal part, but former
works have found and captured some non-poisson nature of
the information spreading dynamics [29]. It is promising to
replace poisson process with these advanced dynamic model in
our framework to match more complicated dynamic patterns,
such as circadian rhythm [30]. With excellent extensibility and
comprehensiveness, our framework can serve as a more gen-
eralized one in modeling information cascading system, and,
together with empirical discovery and applications, advance
our understanding of human behavior.
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